Mutational properties of amino acid residues: implications for evolvability of phosphorylatable residues.
نویسندگان
چکیده
As François Jacob pointed out over 30 years ago, evolution is a tinkering process, and, as such, relies on the genetic diversity produced by mutation subsequently shaped by Darwinian selection. However, there is one implicit assumption that is made when studying this tinkering process; it is typically assumed that all amino acid residues are equally likely to mutate or to result from a mutation. Here, by reconstructing ancestral sequences and computing mutational probabilities for all the amino acid residues, we refute this assumption and show extensive inequalities between different residues in terms of their mutational activity. Moreover, we highlight the importance of the genetic code and physico-chemical properties of the amino acid residues as likely causes of these inequalities and uncover serine as a mutational hot spot. Finally, we explore the consequences that these different mutational properties have on phosphorylation site evolution, showing that a higher degree of evolvability exists for phosphorylated threonine and, to a lesser extent, serine in comparison with tyrosine residues. As exemplified by the suppression of serine's mutational activity in phosphorylation sites, our results suggest that the cell can fine-tune the mutational activities of amino acid residues when they reside in functional protein regions.
منابع مشابه
Exploring the Functional Residues in a Flavin-Binding Fluorescent Protein Using Deep Mutational Scanning
Flavin mononucleotide (FMN)-based fluorescent proteins are versatile reporters that can monitor various cellular processes in both aerobic and anaerobic conditions. However, the understanding of the role of individual amino acid residues on the protein function has been limited and has restricted the development of better functional variants. Here we examine the functional amino acid residues o...
متن کاملIn silico structural analysis of quorum sensing genes in Vibrio fischeri
Quorum sensing controls the luminescence of Vibrio fischeri through the transcriptional activator LuxR and the specific autoinducer signal produced by luxI. Amino acid sequences of these two genes were analyzed using bioinformatics tools. LuxI consists of 193 amino acids and appears to contain five α-helices and six ß-sheets when analyzed by SSpro8. LuxI belongs to the autoinducer synthetase fa...
متن کاملIsolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12
We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...
متن کاملPhylogenetic and sequence analysis of the growth hormone gene of two sturgeons, Huso huso and Acipenser Gueldenstaedtii
In this study, the cDNA Growth Hormone (cGH) of the Belugasturgeon (Husohuso) and Russian sturgeon (Acipensergueldenstaedtii) were cloned and sequenced, and phylogenetic relationships were examined using nucleic acid and amino acid sequences. The nucleotide sequence of the Beluga GH has an open reading frame of 645 nucleotides encoding a protein 214 amino acid residues. The signal peptide cleav...
متن کاملProtein Structural Modularity and Robustness Are Associated with Evolvability
Theory suggests that biological modularity and robustness allow for maintenance of fitness under mutational change, and when this change is adaptive, for evolvability. Empirical demonstrations that these traits promote evolvability in nature remain scant however. This is in part because modularity, robustness, and evolvability are difficult to define and measure in real biological systems. Here...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 367 1602 شماره
صفحات -
تاریخ انتشار 2012